
XL

C/C++

Advanced

Edition

for

Mac

OS

X

Programming

Tasks

Version

6.0

SC09-7867-00

���

XL

C/C++

Advanced

Edition

for

Mac

OS

X

Programming

Tasks

Version

6.0

SC09-7867-00

���

Note!

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices”

on

page

35.

First

Edition

(December

2003)

This

edition

applies

to

version

6.0

of

XL

C/C++

Advanced

Edition

for

Mac

OS

X

(product

number

5724-G12)

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

IBM

welcomes

your

comments.

You

can

send

them

to

compinfo@ca.ibm.com.

Be

sure

to

include

your

e-mail

address

if

you

want

a

reply.

Include

the

title

and

order

number

of

this

book,

and

the

page

number

or

topic

related

to

your

comment.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1998,

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Chapter

1.

Program

Stream

I/O

.

.

.

.

. 1

Standard

Streams

.

.

.

.

.

.

.

.

.

.

.

.

. 1

File

Handles

for

Standard

Streams

.

.

.

.

.

.

. 2

Redirecting

Standard

Streams

.

.

.

.

.

.

.

.

. 2

Chapter

2.

Data

Mapping

and

Storage

.

. 3

Default

Alignment

of

Aggregates

.

.

.

.

.

.

. 4

Alignment

of

Bit

Fields

.

.

.

.

.

.

.

.

.

.

. 5

Alignment

Examples

.

.

.

.

.

.

.

.

.

.

.

. 6

Storage

of

Floating

Point

Data

.

.

.

.

.

.

.

. 8

Storage

of

float

and

double

Types

.

.

.

.

.

.

. 9

Storage

of

int,

long,

and

short

Types

.

.

.

.

.

. 9

Storage

of

Vector

Types

.

.

.

.

.

.

.

.

.

. 10

Mapping

of

Automatic

Variables

.

.

.

.

.

.

. 11

Mapping

of

Compound

Data

Types

.

.

.

.

.

. 11

Chapter

3.

Signals

and

Exception

Handling

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Signals

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Signal

Handling

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Program

Signal

Handling

.

.

.

.

.

.

.

.

.

. 14

Example

of

Using

Volatile

Variables

.

.

.

.

.

. 14

Chapter

4.

Optimization

.

.

.

.

.

.

. 17

Optimization

Techniques

Used

by

XL

C/C++

.

.

. 18

Coding

Your

Application

to

Improve

Performance

19

Find

Faster

I/O

Techniques

.

.

.

.

.

.

.

. 19

Reduce

Function-Call

Overhead

.

.

.

.

.

. 20

Manage

Memory

Efficiently

.

.

.

.

.

.

.

. 21

Optimize

Variables

.

.

.

.

.

.

.

.

.

.

. 21

Manipulate

Strings

Efficiently

.

.

.

.

.

.

. 22

Optimize

Expressions

and

Program

Logic

.

.

. 22

Chapter

5.

Floating

Point

Operations

25

Compile-Time

Floating-Point

Arithmetic

.

.

.

.

. 25

Rounding

Mode

Restrictions

.

.

.

.

.

.

.

.

. 26

Chapter

6.

Constructing

a

Library

.

.

. 27

Initialize

Shared

Library

(C++)

.

.

.

.

.

.

.

. 27

Specify

Priority

Levels

for

Library

Objects

.

.

.

. 29

Example

of

Object

Initialization

in

a

Group

of

Files

(C++)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

Chapter

7.

Framework

Header

Files

.

. 33

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Programming

Interface

Information

.

.

.

.

.

. 36

Trademarks

and

Service

Marks

.

.

.

.

.

.

.

. 37

Industry

Standards

.

.

.

.

.

.

.

.

.

.

.

. 37

©

Copyright

IBM

Corp.

1998,

2003

iii

iv

Programming

Tasks

Chapter

1.

Program

Stream

I/O

Input

and

output

are

mapped

into

logical

data

streams,

either

text

or

binary.

Streams

present

a

consistent

view

of

file

contents,

independent

of

the

underlying

file

system.

I/O

can

be

buffered

to

increase

the

efficiency

of

system

level

I/O.

Text

Streams

Text

streams

contain

printable

characters

and

control

characters.

There

may

not

be

an

exact

correspondence

between

the

characters

in

a

stream

and

the

output.

The

IBM®

XL

C/C++

Advanced

Edition

for

Mac

OS

X

compiler

may

add,

alter,

or

ignore

some

new-line

characters

during

input

or

output

so

that

they

conform

to

the

conventions

for

representing

text

in

the

operating

system

environment.

Printable

characters

are

not

changed.

On

output,

each

new-line

character

is

translated

into

a

carriage-return

character,

followed

by

a

line-feed

character.

On

input,

a

line-feed

character

or

a

carriage-return

character

followed

by

a

line-feed

character

is

converted

to

a

new-line

character.

Binary

Streams

A

binary

stream

is

a

sequence

of

characters

or

data.

The

data

is

not

altered

on

input

or

output.

Standard

Streams

XL

C/C++

supports

the

C

standard

streams

and

C++

iostreams.

C

Standard

Streams

Any

program

that

includes

the

header

stdio.h

can

use

the

C

standard

streams

for

I/O.

The

following

streams

are

automatically

set

up

by

the

run-time

environment:

stdin

The

input

device

from

which

your

application

normally

retrieves

its

data.

For

example,

the

library

function

getchar

uses

stdin.

stdout

The

output

device

to

which

your

application

normally

directs

its

output.

For

example,

the

library

function

printf

uses

stdout.

stderr

The

output

device

to

which

your

application

directs

its

diagnostic

messages.

C++

C++

iostreams

XL

C/C++

Advanced

Edition

for

Mac

OS

X

uses

the

iostream

provided

by

the

gcc

compiler.

The

input

streams

are

istream

and

wistream

objects.

The

output

streams

have

type

ostream

and

wostream.

The

names

of

the

wide

character

streams

and

classes

start

with

a

“w”.

Depending

on

the

level

of

g++,

wide

character

streams

may

or

may

not

be

supported.

©

Copyright

IBM

Corp.

1998,

2003

1

The

iostream

standard

stream

objects

are:

cin

and

wcin

The

standard

narrow-

and

wide-character

input

streams.

cout

and

wcout

The

standard

narrow-

and

wide-character

output

streams.

cerr

and

wcerr

The

standard

error

streams.

Output

to

these

streams

is

unit-buffered.

Characters

sent

to

these

streams

are

flushed

after

each

insertion

operation.

clog

and

wclog

Additional

standard

error

streams.

Output

to

these

streams

is

fully

buffered.

File

Handles

for

Standard

Streams

The

operating

system

associates

a

file

handle

with

each

of

the

streams

as

follows:

File

Handle

C

Stream

C++

Stream

0

stdin

cin

and

wcin

1

stdout

cout

and

wcout

2

stderr

cerr,

clog,

wcerr,

and

wclog

The

file

handle

and

stream

are

not

equivalent.

There

may

be

situations

where

a

file

handle

is

associated

with

a

different

stream.

For

example,

file

handle

2

may

be

associated

with

a

stream

other

than

stderr,

cerr,

or

clog.

Redirecting

Standard

Streams

By

default,

the

standard

streams

read

from

the

keyboard

and

write

to

the

screen.

You

can

redirect

the

standard

streams

in

the

following

ways:

From

within

an

application

To

redirect

C

standard

streams

from

within

your

application,

use

the

freopen

library

function.

For

example,

to

send

your

output

to

a

file

called

pia.out

instead

of

sending

it

to

stdout,

code

the

following

statement

in

your

program:

freopen(“pia.out”,

“w”,

stdout);

From

the

invocation

command

on

the

command

line

The

user

can

redirect

C

or

C++

standard

streams

when

invoking

your

application

from

the

command

line.

The

user

specifies

the

standard

redirection

symbols

>

and

<

with

the

file

handles

for

standard

streams.

For

example,

the

following

command

runs

the

program

bill.exe,

which

has

two

required

parameters

XYZ

and

123,

and

redirects

the

output

from

stdout

to

a

file

called

bill.out:

bill

XYZ

123

>

bill.out

The

user

can

also

redirect

one

standard

stream

to

another.

For

example,

the

following

bash

shell

command

redirects

stderr

to

stdout:

2>

&1

2

Programming

Tasks

Chapter

2.

Data

Mapping

and

Storage

Within

a

structure,

each

data

type

supported

by

XL

C/C++

is

mapped

into

storage

with

a

specific

alignment.

This

alignment

depends

on

the

value

of

the

-qalign

compiler

option

or

#pragma

align.

You

can

also

change

the

alignment

by

using

the

__align

specifier

or

the

aligned

variable

attribute.

2000Mac OS X

You

can

specify

the

following

alignment

values:

v

-qalign=natural

(Natural

column

in

the

table

below)

v

-qalign=power

(Power

column

in

the

table

below)

This

is

the

default.

v

-qalign=mac68k

(Mac

68K

column

in

the

table

below)

v

-qalign=bit_packed

(Bit

Packed

column

in

the

table

below)

Linux

You

can

specify

the

following

alignment

values:

v

-qalign=linuxppc.

This

is

the

default.

v

-qalign=bit_packed

AIX

You

can

specify

the

following

alignment

values:

v

-qalign=natural

v

-qalign=full

or

-qalign=power,

which

are

equivalent.

This

is

the

default.

v

-qalign=mac68k

or

-qalign=twobyte,

which

are

equivalent.

v

-qalign=packed

or

-qalign=bit_packed

Notes:

1.

The

value

of

-qalign

affects

only

the

alignment

of

members,

not

the

amount

of

storage

used

for

each

member.

2.

The

alignment

given

by

-qalign=bit_packed

is

the

same

on

every

platform.

3.

The

following

types

of

alignment

have

slightly

different

implementations

on

the

different

platforms:

-qalign=natural,

-qalign=power,

and

-qalign=mac68k.

4.

If

you

generate

data

with

an

application

on

one

platform

and

read

the

data

with

an

application

on

another

platform,

the

data

may

have

an

alignment

that

the

reading

application

does

not

expect.

To

avoid

this

problem,

use

a

platform-neutral

mechanism

for

the

layout

of

data

in

structures.

For

example,

if

you

wrap

a

structure

with

#pragma

pack

the

alignment

will

be

the

same

on

all

platforms.

Table

1.

Alignment

values

that

are

supported

on

Mac

OS

X

Type

Storage

Alignment

Natural

Power

Mac

68K

Bit

Packed

_Bool

(C),

bool

(C++)

4

bytes

4

bytes

4

bytes

2

bytes

1

bytes

char,

signed

char,

unsigned

char

1

byte

1

byte

1

byte

1

byte

1

byte

int,

unsigned

int

4

bytes

4

bytes

4

bytes

2

bytes

1

byte

short

int,

unsigned

short

int

2

bytes

2

bytes

2

bytes

2

bytes

1

byte

long

int,

unsigned

long

int

4

bytes

4

bytes

4

bytes

2

bytes

1

byte

long

long

8

bytes

8

bytes

(see

note

1)

2

bytes

1

byte

©

Copyright

IBM

Corp.

1998,

2003

3

Table

1.

Alignment

values

that

are

supported

on

Mac

OS

X

(continued)

Type

Storage

Alignment

Natural

Power

Mac

68K

Bit

Packed

float

4

bytes

4

bytes

4

bytes

2

bytes

1

byte

float

_Complex

8

bytes

4

bytes

4

bytes

2

bytes

1

byte

double

8

bytes

8

bytes

(see

note

1)

2

bytes

1

byte

double

_Complex

16

bytes

8

bytes

(see

note

1)

2

bytes

1

byte

long

double

8

bytes

8

bytes

(see

note

1)

2

bytes

1

byte

long

double

_Complex

16

bytes

8

bytes

(see

note

1)

2

bytes

1

byte

pointer

4

bytes

4

bytes

4

bytes

2

bytes

1

byte

vector

types

16

bytes

16

bytes

16

bytes

16

bytes

1

byte

Notes:

1.

For

Power

alignment,

a

long

long,

double,

double

_Complex,

long

double,

or

long

double

_Complex

member

is

8-byte

aligned

if

it

is

the

first

member;

otherwise,

it

is

4-byte

aligned.

Default

Alignment

of

Aggregates

Alignment

within

a

structure

can

be

changed

with

any

of

the

following:

v

#pragma

align

v

#pragma

pack

v

The

__align()

specifier

v

The

__attribute__((aligned))

specifier

v

The

__attribute__((packed))

specifier

v

The

-qalign

compiler

option

Power

Alignment

v

Vector

type

members

have

an

alignment

of

16

bytes.

v

The

first

element

has

its

natural

alignment.

v

Subsequent

members

(other

than

Vector

types)

have

their

natural

alignment

or

4

bytes,

whichever

is

less.

v

The

alignment

of

a

structure

is

the

largest

alignment

value

of

its

members.

v

The

size

of

a

structure

is

the

smallest

multiple

of

its

alignment

value

that

can

encompass

all

of

the

members

of

the

structure.

Natural

Alignment

v

All

elements

have

their

natural

alignment.

v

The

alignment

of

a

structure

is

the

largest

alignment

value

of

its

members.

v

The

size

of

a

structure

is

the

smallest

multiple

of

its

alignment

value

that

can

encompass

all

of

the

members

of

the

structure.

Mac

68K

Alignment

v

Vector

type

members

have

an

alignment

of

16

bytes.

v

Char

type

members

have

an

alignment

of

1

byte.

v

All

elements

other

than

Vector

and

Char

types

have

an

alignment

of

2

bytes.

v

The

alignment

of

a

structure

is

the

largest

alignment

value

of

its

members

or

2

bytes,

whichever

is

greater.

4

Programming

Tasks

v

The

size

of

a

structure

is

the

smallest

multiple

of

its

alignment

value

that

can

encompass

all

of

the

members

of

the

structure.

Bit_Packed

Alignment

v

All

elements

have

an

alignment

of

1

byte.

v

The

alignment

of

a

structure

is

the

largest

alignment

value

of

its

members,

after

the

preceding

alignment

rule

has

been

applied

and

any

alignment

modifiers

have

had

effect.

v

The

size

of

a

structure

is

the

smallest

multiple

of

its

alignment

value

that

can

encompass

all

of

the

members

of

the

structure.

Nested

Aggregates

Aggregates

with

different

alignments

can

be

nested.

Each

aggregate

is

laid

out

using

the

alignment

rules

applicable

to

it.

The

start

position

of

the

nested

aggregate

is

determined

by

the

alignment

mode

that

is

in

effect

when

the

nested

aggregate

is

declared.

Vector

Types

Vector

types

are

16-byte

aligned.

You

can

override

this

behavior

in

any

of

the

following

ways:

v

Specify

#pragma

pack

with

a

value

less

than

16.

v

Specify

#pragma

align(bit_packed)

or

-qalign=bit_packed.

v

Specify

__attribute__((packed)).

The

__align()

and

__attribute__((aligned))

specifiers

do

not

change

the

alignment

of

vector

types.

Alignment

of

Bit

Fields

The

following

rules

apply

when

bit-field

members

are

mapped

out

in

an

aggregate.

Power

Alignment

v

A

bit

field

can

be

declared

as

_Bool

(C),

bool

(C++),

char,

signed

char,

unsigned

char,

short,

unsigned

short,

int,

unsigned

int,

long,

unsigned

long,

long

long,

or

unsigned

long

long

data

type.

v

C

The

maximum

size

of

a

bit

field

is

the

size

of

its

base

declared

type.

v

A

zero-length

bit

field

pads

to

the

next

alignment

boundary

of

its

base

declared

type.

This

causes

the

next

member

to

begin

on

a

byte

boundary

(for

char

bit

fields),

2-byte

boundary

(for

short),

4-byte

boundary

(for

int

or

long),

or

8-byte

boundary

(for

long

long).

Padding

does

not

occur

if

the

previous

member’s

memory

layout

ended

on

the

appropriate

boundary.

v

C

An

aggregate

that

contains

only

zero-length

bit

fields

has

a

length

of

zero

bytes

and

the

alignment

of

the

base

declared

type

of

the

first

member

(1

byte

for

char,

2

bytes

for

short,

4

bytes

for

int

or

long,

and

8

bytes

for

long

long).

v

C++

An

aggregate

that

contains

only

zero-length

bit

fields

has

the

length

of

the

base

declared

type

of

the

first

member

(1

byte

for

char,

2

bytes

for

short,

4

bytes

for

int

or

long,

and

8

bytes

for

long

long).

Natural

Alignment

Chapter

2.

Data

Mapping

and

Storage

5

v

A

bit

field

can

be

declared

as

_Bool

(C),

bool

(C++),

char,

signed

char,

unsigned

char,

short,

unsigned

short,

int,

unsigned

int,

long,

unsigned

long,

long

long,

or

unsigned

long

long

data

type.

v

C

The

maximum

size

of

a

bit

field

is

the

size

of

its

base

declared

type.

v

A

zero-length

bit

field

pads

to

the

next

alignment

boundary

of

its

base

declared

type.

This

causes

the

next

member

to

begin

on

a

byte

boundary

(for

char

bit

fields),

2-byte

boundary

(for

short),

4-byte

boundary

(for

int

or

long),

or

8-byte

boundary

(for

long

long).

Padding

does

not

occur

if

the

previous

member’s

memory

layout

ended

on

the

appropriate

boundary.

v

C

An

aggregate

that

contains

only

zero-length

bit

fields

has

a

length

of

zero

bytes

and

an

alignment

of

1

byte.

v

C++

An

aggregate

that

contains

only

zero-length

bit

fields

has

a

length

of

1

byte.

Mac

68K

Alignment

v

A

bit

field

can

be

declared

as

_Bool

(C),

bool

(C++),

char,

signed

char,

unsigned

char,

short,

unsigned

short,

int,

unsigned

int,

long,

unsigned

long,

long

long,

or

unsigned

long

long

data

type.

v

C

The

maximum

size

of

a

bit

field

is

the

size

of

its

base

declared

type.

v

Bit

fields

are

bit

packed,

and

have

an

alignment

of

1

bit.

v

A

zero-length

bit

field

pads

to

the

next

alignment

boundary

of

its

base

declared

type.

This

causes

the

next

member

to

begin

on

a

byte

boundary

(for

char

bit

fields),

2-byte

boundary

(for

short),

4-byte

boundary

(for

int

or

long),

or

8-byte

boundary

(for

long

long).

Padding

does

not

occur

if

the

previous

member’s

memory

layout

ended

on

the

appropriate

boundary.

v

C

An

aggregate

that

contains

only

zero-length

bit

fields

has

a

length

of

zero

and

an

alignment

of

2

bytes.

v

C++

An

aggregate

that

contains

only

zero-length

bit

fields

has

a

length

of

2

bytes

and

an

alignment

of

2

bytes.

Bit_Packed

Alignment

v

A

bit

field

can

be

declared

as

_Bool

(C),

bool

(C++),

char,

signed

char,

unsigned

char,

short,

unsigned

short,

int,

unsigned

int,

long,

unsigned

long,

long

long,

or

unsigned

long

long

data

type.

v

C

The

maximum

size

of

a

bit

field

is

the

size

of

its

base

declared

type.

v

Bit

fields

have

an

alignment

of

1

bit,

and

are

packed

with

no

default

padding

between

bit

fields.

v

A

zero-length

bit

field

has

no

effect

on

the

alignment

of

the

next

member.

Alignment

Examples

The

following

examples

use

these

symbols

to

show

padding

and

boundaries:

p

=

padding

|

=

halfword

(2-byte)

boundary

:

=

byte

boundary

Mac

68K

Example

For:

6

Programming

Tasks

#pragma

options

align=mac68k

struct

B

{

char

a;

double

b;

}

#pragma

options

align=reset

sizeof(B)

==

10

alignof(B)

==

2

The

layout

of

B

is:

|a:p|b:b|b:b|b:b|b:b|

Bit

Packed

Example

For:

#pragma

options

align=bit_packed

struct

{

int

a

:

8;

int

b

:

10;

int

c

:

12;

int

d

:

4;

int

e

:

3;

int

:

0;

int

f

:

1;

char

g;

}

A;

#pragma

options

align=reset

sizeof(A)

==

7

alignof(A)

==

1

The

layout

of

A

is:

Member

Name

Displacement

Bytes

(Bits)

a

0

b

1

c

2

(2)

d

3

(6)

e

4

(2)

f

5

g

6

Nested

Aggregate

Example

The

following

example

uses

these

symbols

to

show

padding

and

boundaries:

p

=

padding

|

=

halfword

(2-byte)

boundary

:

=

byte

boundary

For:

#pragma

options

align=mac68k

struct

A

{

char

a;

#pragma

options

align=power

struct

B

{

int

b;

Chapter

2.

Data

Mapping

and

Storage

7

char

c;

}

B1;

//

<--

B1

laid

out

using

Power

alignment

rules

#pragma

options

align=reset

//

<--

has

no

effect

on

A

or

B,

but

//

on

subsequent

structs

char

d;

};

#pragma

options

align=reset

sizeof(A)

==

12

alignof(A)

==

2

The

layout

of

A

is:

|a:p|b:b|b:b|c:p|p:p|d:p|

Storage

of

Floating

Point

Data

XL

C/C++

conforms

to

IEEE

format,

in

which

a

floating

point

number

is

represented

in

terms

of

sign

(S),

exponent

(E),

and

fraction

(F):

(-1)S

x

2E

x

1.F

4-Byte

(float)

Data

In

the

internal

representation,

there

is

1

bit

for

the

sign

(S),

8

bits

for

the

exponent

(E),

and

23

bits

for

the

fraction

(F).

The

bits

are

mapped

with

the

fraction

in

bit

0

to

bit

22,

the

exponent

in

bit

23

to

bit

30,

and

the

sign

in

bit

31:

3

32222222

22211111111110000000000

1

09876543

21098765432109876543210

S

EEEEEEEE

FFFFFFFFFFFFFFFFFFFFFFF

Read

the

lines

vertically

from

top

to

bottom.

For

example,

the

third

column

of

numbers

shows

that

bit

61

is

part

of

the

exponent.

The

number

is

stored

as

follows,

with

high

memory

to

the

right:

byte

0

byte

1

byte

2

byte

3

00000000

11111100

22221111

33222222

76543210

54321098

32109876

10987654

FFFFFFFF

FFFFFFFF

EFFFFFFF

SEEEEEEE

8-Byte

(double)

Data

In

the

internal

representation,

there

is

1

bit

for

the

sign

(S),

11

bits

for

the

exponent

(E),

and

52

bits

for

the

fraction

(F).

The

bits

are

mapped

with

the

fraction

in

bit

0

to

bit

51,

the

exponent

in

bit

52

to

bit

62,

and

the

sign

in

bit

63:

6

66655555555

5544444444443333333333222222222211111111110000000000

3

21098765432

1098765432109876543210987654321098765432109876543210

S

EEEEEEEEEEE

FF

The

number

is

stored

as

follows,

with

high

memory

to

the

right:

byte

0

byte

1

byte

2

...

byte

5

byte

6

byte

7

00000000

11111100

22221111

...

44444444

55555544

66665555

76543210

54321098

32109876

...

76543210

54321098

32109876

FFFFFFFF

FFFFFFFF

FFFFFFFF

...

FFFFFFFF

EEEEFFFF

SEEEEEEE

8

Programming

Tasks

Storage

of

float

and

double

Types

Specifier

Storage

Allocated

float

4

bytes

float

_Complex

8

bytes

double

8

bytes

double

_Complex

16

bytes

long

double

8

bytes

To

declare

a

data

object

having

a

floating-point

type,

use

the

float

specifier.

The

float

specifier

has

the

form:

��

float

float

_Complex

double

double

_Complex

long

double

identifier

��

The

declarator

for

a

simple

floating-point

declaration

is

an

identifier.

You

can

initialize

a

simple

floating-point

variable

with

a

float

constant

or

with

a

variable

or

expression

that

evaluates

to

an

integer

or

floating-point

number.

The

storage

class

of

a

variable

determines

how

you

initialize

the

variable.

The

following

example

defines

the

identifier

pi

as

an

object

of

type

double:

double

pi;

The

following

example

defines

the

float

variable

real_number

with

the

initial

value

100.55:

static

float

real_number

=

100.55f;

The

following

example

defines

the

float

variable

float_var

with

the

initial

value

0.0143:

float

float_var

=

1.43e-2f;

The

following

example

declares

the

long

double

variable

maximum:

extern

long

double

maximum;

The

following

example

defines

the

array

table

with

20

elements

of

type

double:

double

table[20];

Storage

of

int,

long,

and

short

Types

Specifier

Storage

Allocated

short,

short

int

2

bytes

int

4

bytes

long,

long

int

4

bytes

long

long,

long

long

int

8

bytes

Chapter

2.

Data

Mapping

and

Storage

9

To

declare

a

data

object

having

an

integer

data

type,

use

an

int

type

specifier.

The

int

specifier

has

the

form:

��

int

identifier

unsigned

short

signed

int

long

long

int

unsigned

��

The

declarator

for

a

simple

integer

definition

or

declaration

is

an

identifier.

You

can

initialize

a

simple

integer

definition

with

an

integer

constant

or

with

an

expression

that

evaluates

to

a

value

that

can

be

assigned

to

an

integer.

The

storage

class

of

a

variable

determines

how

you

can

initialize

the

variable.

The

unsigned

prefix

indicates

that

the

object

is

a

nonnegative

integer.

Each

unsigned

type

provides

the

same

size

storage

as

its

signed

equivalent.

For

example,

int

reserves

the

same

storage

as

unsigned

int.

Because

a

signed

type

reserves

a

sign

bit,

an

unsigned

type

can

hold

a

larger

positive

integer

than

the

equivalent

signed

type.

The

following

example

defines

the

short

int

variable

flag:

short

int

flag;

The

following

example

defines

the

int

variable

result:

int

result;

The

following

example

defines

the

unsigned

long

int

variable

ss_number

as

having

the

initial

value

438888834:

unsigned

long

ss_number

=

438888834ul;

The

following

example

defines

the

identifier

sum

as

an

object

of

type

int.

The

initial

value

of

sum

is

the

result

of

the

expression

a

+

b:

extern

int

a,

b;

auto

sum

=

a

+

b;

Storage

of

Vector

Types

XL

C/C++

Advanced

Edition

for

Mac

OS

X

supports

the

following

vector

types

by

implementing

the

AltiVec

Programming

Interface

specification.

Specifier

Interpretation

vector

unsigned

char

16

unsigned

char

vector

signed

char

16

signed

char

vector

bool

char

16

unsigned

char

vector

unsigned

short,

vector

unsigned

short

int

8

unsigned

short

vector

signed

short,

vector

signed

short

int

8

signed

short

vector

bool

short,

vector

bool

short

int

8

unsigned

short

vector

unsigned

int

4

unsigned

int

vector

signed

int

4

signed

int

vector

bool

int

4

unsigned

int

10

Programming

Tasks

Specifier

Interpretation

vector

float

4

float

vector

pixel

8

unsigned

short

The

vector

specifier

has

the

form:

��

vector

unsigned

char

identifier

__vector

signed

int

bool

short

int

float

pixel

__pixel

��

The

following

types

are

also

supported,

but

are

deprecated:

v

vector

unsigned

long

and

vector

unsigned

long

int

are

equivalent

to

vector

unsigned

int

v

vector

signed

long

and

vector

signed

long

int

are

equivalent

to

vector

signed

int

v

vector

bool

long

and

vector

bool

long

int

are

equivalent

to

vector

bool

int

Mapping

of

Automatic

Variables

For

automatic

variables,

consider

the

following

information:

v

Automatic

variables

have

the

same

mapping

as

other

variables.

v

When

optimization

is

turned

on,

automatic

variables

are

ordered

to

minimize

padding.

v

Automatic

variables

are

always

mapped

on

the

stack

instead

of

a

data

segment.

Because

memory

on

the

stack

is

constantly

reallocated,

automatic

variables

are

not

guaranteed

to

be

retained

after

the

return

of

the

function

that

used

them.

Mapping

of

Compound

Data

Types

You

can

access

the

allocated

storage

for

the

following

compound

data

types

in

C

and

C++

programs:

v

Null-Terminated

Character

Strings

v

Fixed-Length

Arrays

Containing

Simple

Data

Types

v

Aligned

Structures

v

Unaligned

or

Packed

Structures

v

Arrays

of

Structures

C++

The

C++

compiler

may

generate

extra

fields

for

classes

that

contain

base

classes

or

virtual

functions.

Objects

of

these

types

may

not

conform

to

the

usual

mappings

for

structures.

Chapter

2.

Data

Mapping

and

Storage

11

12

Programming

Tasks

Chapter

3.

Signals

and

Exception

Handling

This

chapter

describes

how

your

program

can

handle

signals

and

exceptions.

Signals

A

signal

is

a

software

interrupt.

The

following

types

of

events

raise

signals:

v

A

machine

interrupt,

such

as

divide

by

zero.

This

is

a

very

common

source

of

signals.

v

Your

program

can

send

a

signal

to

itself

with

the

raise

function.

v

The

shell

can

generate

signals

in

response

to

user-defined

keystrokes.

For

example,

Ctrl-C

is

commonly

defined

as

the

SIGINT

signal.

Use

the

stty

-a

command

to

determine

which

signals

are

set

for

your

shell.

v

The

operating

system

may

send

a

signal.

For

example,

SIGSEGV

may

be

sent

for

an

invalid

memory

reference.

Signals

comply

with

the

C

and

C++

standards.

If

you

want

your

application

to

be

portable

to

other

operating

systems,

you

can

use

a

signal

handler

to

detect

operating

system

exceptions.

Operating

system

signals

can

be

either

synchronous

or

asynchronous.

v

Synchronous

signals

are

caused

by

code

in

the

thread

that

receives

the

signal.

Most

operating

system

signals

are

synchronous.

v

Asynchronous

signals

are

caused

by

actions

outside

of

your

current

thread,

for

example,

typing

Ctrl-C.

C++

C++

Exception

Handling

C++

exception

constructs

such

as

try,

throw

and

catch

exist

only

within

the

C++

language.

C++

exception

handlers

cannot

intercept

operating

system

exceptions,

such

as

access

violations.

Signal

Handling

You

can

handle

signals

in

either

of

the

following

ways:

v

Accept

the

default

handling

provided

by

XL

C/C++,

which

usually

results

in

program

termination

with

a

message.

v

Program

signal

handling.

When

to

Simply

Debug

To

eliminate

signals

that

you

suspect

are

due

to

program

logic,

use

a

debugger.

Here

are

some

other

common

problems:

v

Improper

use

of

memory.

Using

a

pointer

to

an

object

that

has

already

been

freed

can

cause

an

exception.

v

Using

an

invalid

pointer.

v

Passing

an

invalid

parameter

to

a

system

function.

v

Return

codes

from

library

or

system

calls

that

are

not

checked.

©

Copyright

IBM

Corp.

1998,

2003

13

When

Special

Handling

is

Required

Floating

point

exceptions

and

two

classes

of

library

functions,

math

functions

and

critical

functions,

require

special

handling.

Operating

system

signals

that

occur

in

all

other

library

functions

are

treated

as

though

they

occurred

in

regular

user

code.

If

your

program

links

with

shared

libraries

that

link

to

more

than

one

library

environment,

you

must

take

steps

to

ensure

that

the

right

handler

is

called.

Program

Signal

Handling

Use

the

signal

function

to

specify

how

to

handle

signals.

For

each

signal,

you

can

specify

one

of

the

types

of

handlers

listed

below.

The

signal

constants

are

defined

in

<signal.h>.

SIG_DFL

Specifies

the

default

action.

This

is

the

initial

setting

for

all

signals.

For

most

signals,

the

default

action

is

to

terminate

the

process

with

an

error

message.

SIG_IGN

Ignores

the

condition

and

tries

to

continue

running

the

program.

Your

own

signal

handler

function

Registers

the

function

you

specify.

This

can

be

a

function

you

have

written.

When

the

signal

is

reported

and

your

function

is

called,

signal

handling

is

reset

to

SIG_DFL

to

prevent

recursion

should

the

same

signal

be

reported

from

your

function.

To

reset

default

handling

for

a

signal,

call

the

signal

in

a

statement

similar

to

the

following.

Specify

the

signal

name

in

the

first

argument

of

signal.

signal(name,

SIG_DFL);

Example

of

Using

Volatile

Variables

User

variables

that

are

referenced

by

multiple

threads

should

have

the

attribute

volatile

to

ensure

that

all

changes

to

the

value

of

the

variable

are

performed

immediately

by

the

compiler.

Because

of

the

way

the

XL

C/C++

compiler

optimizes

code,

the

following

example

may

not

work

as

intended

if

it

is

built

with

the

optimization

options.

#include

<io.h>

#include

<signal.h>

#include

<stdio.h>

#include

<string.h>

void

sig_handler(int);

static

int

stepnum;

int

main()

{

stepnum

=

0;

signal(SIGSEGV,

sig_handler);

/*

code

omitted

-

does

not

use

stepnum

*/

stepnum

=

1;

/*

code

omitted

-

does

not

use

stepnum

*/

stepnum

=

2;

return

0;

}

void

sig_handler(int

x)

{

14

Programming

Tasks

char

FileData[50];

sprintf(FileData,

“Error

at

Step

%d\n\r”,

stepnum);

write

(2,

FileData,

strlen(fileData));

}

An

optimized

program

may

not

immediately

store

the

value

1

when

1

is

assigned

to

the

variable

stepnum.

It

may

never

store

the

value

1

and

only

store

the

value

2.

If

a

signal

occurs

between

the

assignments

to

stepnum,

the

value

passed

to

sig_handler

may

not

be

correct.

Declaring

a

variable

(stepnum)

as

volatile

indicates

to

the

compiler

that

references

to

the

variable

have

side

effects,

or

that

the

variable

may

change

in

ways

the

compiler

cannot

determine.

Optimization

will

not

eliminate

any

action

involving

the

volatile

variable.

Changes

to

the

value

of

the

variable

are

then

stored

immediately,

and

uses

of

the

variable

will

always

cause

it

to

be

reloaded

from

memory.

Chapter

3.

Signals

and

Exception

Handling

15

16

Programming

Tasks

Chapter

4.

Optimization

The

compiler

transforms

source

code

into

object

code.

You

can

use

the

compiler’s

optimization

features

to

produce

object

code

that

is

faster,

smaller,

or

both.

Some

optimizations

produce

code

that

is

both

faster

and

smaller.

In

other

cases,

there

is

a

trade-off

between

speed

and

size.

In

addition

to

the

benefits

of

optimization,

you

should

also

consider

the

costs.

Optimization

increases

compilation

time,

increases

the

space

used

during

compilation,

and

decreases

the

usefulness

of

debugging

information.

To

take

the

best

advantage

of

the

compiler’s

optimization

features,

you

should

write

code

that

strictly

conforms

to

the

appropriate

language

standard.

Speed

versus

Size

To

minimize

the

size

of

the

object

code,

specify

the

-qcompact

compiler

option.

Using

this

option

may

increase

execution

time.

For

larger

programs

that

are

not

compute-intensive,

optimizing

for

size

might

result

in

a

faster

program

than

optimizing

for

speed.

Global

effects

such

as

improved

paging

and

cache

performance

may

outweigh

the

local

effects

of

slower

instruction

sequences.

If

both

size

and

speed

are

important,

consider

balancing

the

performance

by

optimizing

some

modules

for

speed,

and

others

for

size.

Determine

which

modules

contain

hotspots,

and

are

compute-intensive;

these

should

be

optimized

for

speed.

All

other

modules

should

be

optimized

for

size.

To

find

the

right

balance,

you

may

need

to

experiment

with

different

combinations

of

techniques.

Specific

Hardware

If

you

want

to

tune

your

application

for

a

specific

subset

of

the

supported

systems,

you

can

specify:

v

The

architecture

(-qarch

option)

v

The

microprocessor

(-qtune

option)

v

The

cache

or

memory

geometry

(-qcache

option)

Exceptions

and

Stack

Unwinding

C++

If

your

program

does

not

throw

any

C++

exceptions,

you

can

use

the

-qnoeh

option.

This

option

allows

the

compiler

to

omit

cleanup

code.

If

the

stack

will

not

be

unwound

while

any

routine

in

this

compilation

is

active,

you

can

use

the

-qnounwind

option.

This

option

can

improve

optimization

of

non-volatile

register

saves

and

restores.

In

C++,

the

-qnounwind

option

implies

the

-qnoeh

option.

When

to

Optimize

©

Copyright

IBM

Corp.

1998,

2003

17

Optimize

your

code

throughout

your

development

cycle.

Develop,

test,

and

optimize

incrementally

rather

than

developing

and

testing

and

then

optimizing

the

entire

application

at

the

end.

You

can

use

profile-directed

feedback

to

tune

the

performance

of

your

application

for

a

typical

usage

scenario.

First,

compile

the

program

with

the

-qpdf1

option.

Generate

profile

data

by

using

the

compiled

program

in

the

same

ways

that

users

will

typically

use

it.

Compile

the

program

again,

with

the

-qpdf2

option.

This

optimizes

the

program

based

on

the

profile

data.

Optimization

Techniques

Used

by

XL

C/C++

By

default,

the

compiler

does

not

optimize

your

program.

To

optimize

your

program,

specify

the

-qoptimize

option.

You

can

specify

optimization

level

2,

3,

4,

or

5.

The

optimization

level

determines

which

optimization

techniques

the

compiler

uses.

The

compiler

uses

the

following

techniques

at

optimization

level

2

or

higher:

v

Eliminating

common

subexpressions

that

are

recalculated

in

subsequent

expressions.

For

example,

with

these

expressions:

a

=

c

+

d;

f

=

c

+

d

+

e;

the

common

expression

c

+

d

is

saved

from

its

first

evaluation

and

is

used

in

the

subsequent

statement

to

determine

the

value

of

f.

v

Simplifying

algebraic

expressions.

For

example,

the

compiler

combines

multiple

constants

that

are

used

in

the

same

expression.

v

Evaluating

constants

at

compile

time

v

Eliminating

unused

or

redundant

code,

including:

–

Code

that

cannot

be

reached

–

Code

whose

results

are

not

subsequently

used

–

Store

instructions

whose

values

are

not

subsequently

used
v

Rearranging

the

program

code

to

minimize

branching

logic,

combine

physically

separate

blocks

of

code,

and

minimize

execution

time

v

Allocating

variables

and

expressions

to

available

hardware

registers

using

a

graph

coloring

algorithm

v

Replacing

less

efficient

instructions

with

more

efficient

ones.

For

example,

in

array

subscripting,

an

add

instruction

replaces

a

multiply

instruction.

v

Moving

invariant

code

out

of

a

loop,

including:

–

Expressions

whose

values

do

not

change

within

the

loop

–

Branching

code

based

on

a

variable

whose

value

does

not

change

within

the

loop

–

Store

instructions
v

Unrolling

some

loops

(-qunroll)

v

Pipelining

some

loops

The

compiler

uses

the

following

techniques

at

optimization

level

3

or

higher:

v

Unrolling

deeper

loops

and

improving

loop

scheduling

v

Increasing

the

scope

of

optimization

v

Performing

optimizations

with

marginal

or

niche

effectiveness,

which

may

not

help

all

programs

18

Programming

Tasks

v

Performing

optimizations

that

are

expensive

in

compile

time

or

space

v

Reordering

some

floating-point

computations,

which

may

produce

precision

differences

or

affect

the

generation

of

floating-point-related

exceptions

(-qnostrict)

v

Eliminating

implicit

memory

usage

limits

(-qmaxmem=-1)

The

compiler

uses

the

following

techniques

at

optimization

level

4

or

higher:

v

Interprocedural

analysis,

which

invokes

the

optimizer

at

link

time

to

perform

optimizations

across

multiple

source

files

(-qipa)

v

High-order

transformations,

which

provide

optimized

handling

of

loop

nests

and

array

language

constructs

(-qhot)

v

Hardware-specific

optimization

(-qarch=auto,

-qtune=auto,

and

-qcache=auto)

The

compiler

uses

the

following

technique

at

optimization

level

5:

v

More

detailed

interprocedural

analysis

(-qipa=level=2)

Coding

Your

Application

to

Improve

Performance

Before

you

begin

optimizing,

you

should

check

your

application

for

the

following

potential

improvements:

v

Choose

efficient

algorithms

with

small

memory

footprints

v

Avoid

duplicate

copies

of

data

v

Structure

data

to

minimize

padding

between

items

The

following

sections

contain

specific

suggestions

for

improving

the

performance

of

your

application:

v

“Find

Faster

I/O

Techniques”

v

“Reduce

Function-Call

Overhead”

on

page

20

v

“Manage

Memory

Efficiently”

on

page

21

v

“Optimize

Variables”

on

page

21

v

“Manipulate

Strings

Efficiently”

on

page

22

v

“Optimize

Expressions

and

Program

Logic”

on

page

22

Find

Faster

I/O

Techniques

There

are

a

number

of

ways

to

improve

your

program’s

performance

of

input

and

output:

v

Use

binary

streams

instead

of

text

streams.

In

binary

streams,

data

is

not

changed

on

input

or

output.

v

Use

the

low-level

I/O

functions,

such

as

open

and

close.

These

functions

are

faster

and

more

specific

to

the

application

than

the

stream

I/O

functions

like

fopen

and

fclose.

You

must

provide

your

own

buffering

for

the

low-level

functions.

v

If

you

do

your

own

I/O

buffering,

make

the

buffer

a

multiple

of

4K,

which

is

the

size

of

a

page.

v

When

reading

input,

read

in

a

whole

line

at

once

rather

than

one

character

at

a

time.

v

If

you

know

you

have

to

process

an

entire

file,

determine

the

size

of

the

data

to

be

read

in,

allocate

a

single

buffer

to

read

it

to,

read

the

whole

file

into

that

buffer

at

once

using

read,

and

then

process

the

data

in

the

buffer.

This

reduces

Chapter

4.

Optimization

19

disk

I/O,

provided

the

file

is

not

so

big

that

excessive

swapping

will

occur.

Consider

using

the

mmap

function

to

access

the

file.

v

Instead

of

scanf

and

fscanf,

use

fgets

to

read

in

a

string,

and

then

use

one

of

atoi,

atol,

atof,

or

_atold

to

convert

it

to

the

appropriate

format.

v

Use

sprintf

only

for

complicated

formatting.

For

simpler

formatting,

such

as

string

concatenation,

use

a

more

specific

string

function.

Reduce

Function-Call

Overhead

When

you

write

a

function

or

call

a

library

function,

consider

the

following

suggestions:

v

Call

a

function

directly,

rather

than

using

function

pointers.

v

Pass

a

value

to

a

function

as

an

argument,

rather

than

letting

the

function

take

the

value

from

a

global

variable.

v

Use

constant

arguments

in

inlined

functions

whenever

possible.

Functions

with

constant

arguments

provide

more

opportunities

for

optimization.

v

Use

the

#pragma

isolated_call

preprocessor

directive

to

list

functions

that

have

no

side

effects

and

do

not

depend

on

side

effects.

v

Declare

a

nonmember

function

as

static

whenever

possible.

This

may

speed

up

calls

to

the

function.

v

C++

Use

virtual

functions

only

when

necessary.

They

are

usually

compiled

to

be

indirect

calls,

which

are

slower

than

direct

calls.

v

C++

Usually,

you

should

not

declare

virtual

functions

inline.

If

all

virtual

functions

in

a

class

are

inline,

the

virtual

function

table

and

all

the

virtual

function

bodies

will

be

replicated

in

each

compilation

unit

that

uses

the

class.

v

C++

When

declaring

functions,

use

the

const

specifier

whenever

possible.

v

C

Fully

prototype

all

functions.

A

full

prototype

gives

the

compiler

and

optimizer

complete

information

about

the

types

of

the

parameters.

As

a

result,

promotions

from

unwidened

types

to

widened

types

are

not

required,

and

parameters

may

be

passed

in

appropriate

registers.

v

C

Avoid

using

unprototyped

variable

argument

functions.

v

Design

functions

so

that

the

most

frequently

used

parameters

are

in

the

left-most

positions

in

the

function

prototype.

v

Avoid

passing

by

value

structures

or

unions

as

function

parameters

or

returning

a

structure

or

a

union.

Passing

such

aggregates

requires

the

compiler

to

copy

and

store

many

values.

This

is

worse

in

C++

programs

in

which

class

objects

are

passed

by

value

because

a

constructor

and

destructor

are

called

when

the

function

is

called.

Instead,

pass

or

return

a

pointer

to

the

structure

or

union,

or

pass

it

by

reference.

v

Pass

small

types

such

as

int

and

short

by

value

rather

than

passing

by

reference,

whenever

possible.

v

If

your

function

exits

by

returning

the

value

of

another

function

with

the

same

parameters

that

were

passed

to

your

function,

put

the

parameters

in

the

same

order

in

the

function

prototypes.

The

compiler

can

then

branch

directly

to

the

other

function.

v

Use

the

intrinsic

and

built-in

functions,

which

include

string

manipulation,

floating-point,

and

trigonometric

functions,

instead

of

coding

your

own.

Intrinsic

functions

require

less

overhead

and

are

faster

than

a

function

call,

and

often

allow

the

compiler

to

perform

better

optimization.

20

Programming

Tasks

C++ Your

functions

are

automatically

mapped

to

intrinsic

functions

if

you

include

the

XL

C/C++

header

files.

C

Your

functions

are

mapped

to

intrinsic

functions

if

you

include

<math.h>

and

<string.h>.

v

Selectively

mark

your

functions

for

inlining,

using

the

inline

keyword.

An

inlined

function

requires

less

overhead

and

is

generally

faster

than

a

function

call.

The

best

candidates

for

inlining

are

small

functions

that

are

called

frequently

from

a

few

places.

You

might

also

want

to

put

these

functions

into

header

files.

Large

functions

and

functions

that

are

called

rarely

may

not

be

good

candidates

for

inlining.

Be

sure

to

inline

all

functions

that

only

load

or

store

a

value.

v

Avoid

breaking

your

program

into

too

many

small

functions.

If

you

must

use

small

functions,

seriously

consider

using

-qipa.

v

C++

Avoid

virtual

functions

and

virtual

inheritance

unless

required

for

class

extensibility.

These

language

features

are

costly

in

object

space

and

function

invocation

performance.

Manage

Memory

Efficiently

Because

C++

objects

are

often

allocated

from

the

heap

and

have

limited

scope,

memory

use

in

C++

programs

affects

performance

more

than

in

C

programs.

v

In

a

structure,

declare

the

largest

members

first.

v

In

a

structure,

place

variables

near

each

other

if

they

are

frequently

used

together.

v

C++

Ensure

that

objects

that

are

no

longer

needed

are

freed

or

otherwise

made

available

for

reuse.

One

way

to

do

this

is

to

use

an

object

manager.

Each

time

you

create

an

instance

of

an

object,

pass

the

pointer

to

that

object

to

the

object

manager.

The

object

manager

maintains

a

list

of

these

pointers.

To

access

an

object,

you

can

call

an

object

manager

member

function

to

return

the

information

to

you.

The

object

manager

can

then

manage

memory

usage

and

object

reuse.

v

C++

Avoid

copying

large,

complicated

objects.

v

C++

Avoid

performing

a

deep

copy

if

a

shallow

copy

is

all

you

require.

For

an

object

that

contains

pointers

to

other

objects,

a

shallow

copy

copies

only

the

pointers

and

not

the

objects

to

which

they

point.

The

result

is

two

objects

that

point

to

the

same

contained

object.

A

deep

copy,

however,

copies

the

pointers

and

the

objects

they

point

to,

as

well

as

any

pointers

or

objects

contained

within

that

object,

and

so

on.

Optimize

Variables

Consider

the

following

suggestions:

v

Use

local

variables,

preferably

automatic

variables,

as

much

as

possible.

The

compiler

must

make

several

worst-case

assumptions

about

a

global

variable.

For

example,

if

a

function

uses

external

variables

and

also

calls

external

functions,

the

compiler

assumes

that

every

call

to

an

external

function

could

change

the

value

of

every

external

variable.

If

you

know

that

a

global

variable

is

not

affected

by

any

function

call,

and

this

variable

is

read

several

times

with

function

calls

interspersed,

copy

the

global

variable

to

a

local

variable

and

then

use

this

local

variable.

Chapter

4.

Optimization

21

v

If

you

must

use

global

variables,

use

static

variables

with

file

scope

rather

than

external

variables

whenever

possible.

In

a

file

with

several

related

functions

and

static

variables,

the

optimizer

can

gather

and

use

more

information

about

how

the

variables

are

affected.

v

If

you

must

use

external

variables,

group

external

data

into

structures

or

arrays

whenever

it

makes

sense

to

do

so.

All

elements

of

an

external

structure

use

the

same

base

address.

v

The

#pragma

isolated_call

preprocessor

directive

can

improve

the

run-time

performance

of

optimized

code

by

allowing

the

compiler

to

make

less

pessimistic

assumptions

about

the

storage

of

external

and

static

variables.

Isolated_call

functions

with

constant

or

loop-invariant

parameters

may

be

moved

out

of

loops,

and

multiple

calls

with

the

same

parameters

may

be

replaced

with

a

single

call.

v

Avoid

taking

the

address

of

a

variable.

If

you

use

a

local

variable

as

a

temporary

variable

and

must

take

its

address,

avoid

reusing

the

temporary

variable.

Taking

the

address

of

a

local

variable

inhibits

optimizations

that

would

otherwise

be

done

on

calculations

involving

that

variable.

v

Use

constants

instead

of

variables

where

possible.

The

optimizer

will

be

able

to

do

a

better

job

reducing

run-time

calculations

by

doing

them

at

compile-time

instead.

For

instance,

if

a

loop

body

has

a

constant

number

of

iterations,

use

constants

in

the

loop

condition

to

improve

optimization;

(for

(i=0;

i<4;

i++)

can

be

better

optimized

than

for

(i=0;

i<x;

i++)).

v

Use

register-sized

integers

(long

data

type)

for

scalars.

For

large

arrays

of

integers,

consider

using

one-

or

two-byte

integers

or

bit

fields.

v

Use

the

smallest

floating-point

precision

appropriate

to

your

computation.

Manipulate

Strings

Efficiently

The

handling

of

string

operations

can

affect

the

performance

of

your

program.

v

When

you

store

strings

into

allocated

storage,

align

the

start

of

the

string

on

an

8-byte

boundary.

v

Keep

track

of

the

length

of

your

strings.

If

you

know

the

length

of

a

string,

you

can

use

mem

functions

instead

of

str

functions.

For

example,

memcpy

is

faster

than

strcpy

because

it

does

not

have

to

search

for

the

end

of

the

string.

v

If

you

are

certain

that

the

source

and

target

do

not

overlap,

use

memcpy

instead

of

memmove.

v

When

manipulating

strings

using

mem

functions,

faster

code

will

be

generated

if

the

count

parameter

is

a

constant

rather

than

a

variable.

This

is

especially

true

for

small

count

values.

v

Make

string

literals

read-only

(the

default),

whenever

possible.

This

improves

certain

optimization

techniques.

You

can

explicitly

set

strings

to

read-only

by

using

#pragma

strings

(readonly)

in

your

source

files

or

-qro

to

avoid

changing

your

source

files.

Optimize

Expressions

and

Program

Logic

Consider

the

following

suggestions:

v

If

components

of

an

expression

are

used

in

other

expressions,

assign

the

duplicated

values

to

a

local

variable.

v

Avoid

forcing

the

compiler

to

convert

numbers

between

integer

and

floating-point

internal

representations.

For

example:

float

array[10];

float

x

=

1.0;

int

i;

22

Programming

Tasks

for

(i

=

0;

i<

9;

i++)

{

/*

No

conversions

needed

*/

array[i]

=

array[i]*x;

x

=

x

+

1.0;

}

for

(i

=

0;

i<

9;

i++)

/*

Multiple

conversions

needed

*/

array[i]

=

array[i]*i;

When

you

must

use

mixed-mode

arithmetic,

code

the

integer

and

floating-point

arithmetic

in

separate

computations

whenever

possible.

v

Avoid

goto

statements

that

jump

into

the

middle

of

loops.

Such

statements

inhibit

certain

optimizations.

v

Improve

the

predictability

of

your

code

by

making

the

fall-through

path

more

probable.

Code

such

as:

if

(error)

{handle

error}

else

{real

code}

should

be

written

as:

if

(!error)

{real

code}

else

{error}

v

If

one

or

two

cases

of

a

switch

statement

are

typically

executed

much

more

frequently

than

other

cases,

break

out

those

cases

by

handling

them

separately

before

the

switch

statement.

v

C++

Use

try

blocks

for

exception

handling

only

when

necessary

because

they

can

inhibit

optimization.

v

Keep

array

index

expressions

as

simple

as

possible.

Chapter

4.

Optimization

23

24

Programming

Tasks

Chapter

5.

Floating

Point

Operations

Single

precision

values

have

an

approximate

range

of

10(-38)

to

10(+38),

with

about

7

decimal

digits

of

precision.

Double

precision

values

have

an

approximate

range

of

10(-308)

to

10(+308)

and

precision

of

about

16

decimal

digits.

When

results

must

be

converted

to

single

precision,

rounding

operations

are

used.

A

rounding

operation

produces

the

correct

single-precision

value

based

on

the

IEEE

rounding

mode

in

effect.

Because

explicit

rounding

operations

are

required,

single-precision

computations

are

often

slower

than

double-precision

computations.

On

many

other

machines,

the

reverse

is

true:

single-precision

operations

are

faster

than

double-precision

operations.

Code

ported

from

other

systems

can

show

different

performance

on

the

PowerPC®

architecture.

The

PowerPC

hardware

provides

both

single-precision

and

double-precision

operations

that

multiply

two

numbers

and

add

a

third

number

to

the

product.

These

multiply-add-fusion

(maf)

operations

are

performed

in

the

same

time

as

a

multiply

or

an

add

operation

alone.

The

maf

functions

provide

an

extension

to

the

IEEE

standard

because

they

perform

the

multiply

and

add

with

one

(rather

than

two)

rounding

errors.

The

maf

functions

are

both

faster

and

more

accurate

than

the

equivalent

separate

operations.

Use

the

-qfloat=nomaf

option

to

suppress

the

generation

of

these

multiply-add

instructions

for

greater

compatibility

with

the

accuracy

available

on

other

systems.

Note:

Single-precision

instructions

are

used

with

single-precision

data.

Detecting

Floating-Point

Exceptions

A

number

of

floating-point

exceptions

can

be

detected

by

the

floating-point

hardware:

invalid

operation,

division

by

zero,

overflow,

underflow,

and

inexact.

By

default,

all

exceptions

are

ignored.

However,

if

you

use

the

-qflttrap

option,

any

or

all

of

these

exceptions

can

be

detected.

In

addition,

when

you

add

suitable

support

code

to

your

program,

program

execution

can

continue

after

an

exception

occurs,

and

you

can

then

modify

the

results

of

operations

causing

exceptions.

Compile-Time

Floating-Point

Arithmetic

The

compiler

attempts

to

perform

as

much

floating-point

arithmetic

as

possible

at

compile

time.

Floating-point

operations

with

constant

operands

are

folded,

replacing

the

operation

with

the

result

calculated

at

compile

time.

When

optimization

is

enabled,

more

folding

might

occur

than

when

optimization

is

not

enabled.

The

-qfloat=fold

option

controls

the

rounding

mode

that

is

used

at

compile

time.

For

example,

-qfloat=nofold

suppresses

compile-time

rounding.

Compile-time

floating-point

arithmetic

can

have

two

effects

on

program

results:

v

In

specific

cases,

the

result

of

a

computation

at

compile

time

might

differ

slightly

from

the

result

that

would

have

been

calculated

at

run

time.

The

reason

is

that

more

rounding

operations

occur

at

compile

time.

For

example,

where

a

©

Copyright

IBM

Corp.

1998,

2003

25

multiply-add-fused

(MAF)

operation

might

be

used

at

run

time,

separate

multiply

and

add

operations

might

be

used

at

compile

time,

producing

a

slightly

different

result.

v

Computations

that

produce

exceptions

can

be

folded

to

the

IEEE

result

that

would

have

been

produced

by

default

in

a

run-time

operation.

This

would

prevent

an

exception

from

occurring

at

run

time.

When

using

the

-qflttrap

option,

you

should

consider

using

the

-qfloat=nofold

option.

In

general,

code

that

affects

the

rounding

mode

at

run

time

should

be

compiled

with

the

-y

option

that

matches

the

rounding

mode

intended

at

run

time.

For

example,

when

the

following

program:

int

main

()

{

union

uu

{

float

x;

int

i;

}

u;

volatile

float

one,

three;

u.x=1.0/3.0;

printf(“1/3=%8x

\n”,

u.i);

one=1.0

three=3.0;

u.x=one/three;

printf

(“1/3=%8x

\n”,

u.i);

return

0;

}

is

compiled

using

-yz,

the

expression

1.0/3.0

is

folded

by

the

compiler

at

compile

time

into

a

double-precision

result.

This

result

is

then

converted

to

single-precision

and

then

stored

in

float

u.x.

The

-qfloat=nofold

option

can

be

specified

to

suppress

all

compile-time

folding

of

floating-point

computations.

The

-y

option

only

affects

compile-time

rounding

of

floating-point

computations,

but

does

not

affect

run-time

rounding.

The

code

fragment:

one

=

1.0;

three

=

3.0;

x

=

one/three;

is

evaluated

at

run

time

in

single-precision.

Here,

the

default

run-time

rounding

of

“round

to

nearest”

is

still

in

effect

and

takes

precedence

over

the

compile-time

specification

of

“round

to

zero”.

The

output

of

this

program

is:

1/3=3eaaaaaa

1/3=3eaaaaab

Rounding

Mode

Restrictions

The

floating-point

rounding

mode

can

only

be

changed

at

the

beginning

and

end

of

a

function.

It

cannot

be

changed

across

a

function

call,

and

if

it

is

changed

within

a

function,

it

must

be

restored

before

returning

to

the

calling

routine.

26

Programming

Tasks

Chapter

6.

Constructing

a

Library

Shared

Libraries

You

should

compile

shared

libraries

with

the

-qmkshrobj

compiler

option.

xlc++

-c

foo.c++

xlc++

-qmkshrobj

-o

libfoo.dylib

foo.o

Static

Libraries

To

construct

a

static

library,

compile

each

file

and

then

use

the

Mac

OS

X

ar

command

to

link

the

files

and

produce

an

archive

library

file.

xlc++

-c

-o

bar.o

example.c++

ar

rv

libfoo.a

bar.o

example.o

Initialize

Shared

Library

(C++)

In

some

C++

programs,

it

is

important

to

specify

the

order

in

which

objects

are

initialized.

Before

the

main

function

of

a

C++

program

is

executed,

the

language

definition

ensures

that

all

objects

with

constructors

from

all

the

files

included

in

the

C++

program

have

been

properly

constructed.

The

language

definition,

however,

does

not

specify

the

order

of

initialization

for

these

objects

across

files.

In

some

cases,

you

may

want

to

specify

the

initialization

order

of

some

objects

in

your

program.

Often,

your

program

will

be

made

up

of

several

files

and

files

contained

in

libraries.

The

libraries

that

you

use

with

your

C++

source

program

may

contain

object

(.o)

files

that

have

components

shared

with

other

programs

(shared

files),

as

well

as

files

that

are

only

used

by

your

program

(non-shared

files).

To

specify

an

initialization

order,

you

can:

v

Specify

an

initialization

priority

number

for

objects

within

a

file

using

the

#pragma

priority

directive.

v

Generate

shared

objects

using

the

-qmkshrobj

compiler

option,

then

construct

an

archive

(.a)

library

containing

several

shared

and

non-shared

objects.

2000Mac OS X

Order

of

Initialization

and

Termination

The

run-time

environment

initializes

the

namespace-scope

objects

within

a

single

compilation

unit

in

the

order

of

their

priority

number.

Priority

numbers

can

range

from

101

to

65535.

The

smallest

priority

number

that

you

can

specify,

101,

is

initialized

first.

The

largest

priority

number,

65535,

is

initialized

last.

The

default

priority

of

static

objects

is

65535,

and

can

be

controlled

with

#pragma

priority

or

the

init_priority()

variable

attribute.

Objects

with

the

same

priority

value

are

initialized

in

declaration

order.

All

global

objects

within

a

static

application

are

initialized

in

link

order.

The

first

object

file

listed

on

the

link

step

is

initialized

first,

followed

by

the

next

object

specified.

The

order

of

initialization

within

each

object

obeys

the

same

rules

listed

above.

For

example,

if

application

A

links

to

modules

B

then

C,

all

initializers

are

run

for

object

B

followed

by

initializers

for

object

C.

©

Copyright

IBM

Corp.

1998,

2003

27

Global

objects

within

a

dynamic

library

are

initialized

only

if

the

program

contains

a

reference

to

a

member

of

the

library.

Libraries

are

initialized

based

on

the

order

that

members

are

referenced

within

the

program.

For

example,

program

A

links

to

dynamic

libraries

B

and

C.

When

program

A

calls

a

function

defined

in

library

C,

all

initializers

in

library

C

are

run.

If

program

A

later

calls

a

function

defined

in

library

B,

all

initializer

in

library

B

are

then

run.

When

all

of

the

static

objects

in

a

compilation

unit

have

been

initialized,

the

functions

that

have

the

constructor

attribute

are

run.

All

of

the

initalizers

from

one

object

file

are

run,

followed

by

functions

marked

with

the

constructor

attribute

from

the

same

object

file,

then

the

intializers

and

functions

from

the

next

object

file,

and

so

on.

The

object

files

are

accessed

in

link

order,

and

the

functions

within

an

object

file

are

run

in

reverse-definition

order.

Objects

are

terminated

in

the

reverse

of

the

initialization

order.

Before

the

object

is

terminated,

the

destructor

functions

are

run

in

link

order

of

the

object

files

and

reverse-definition

order

within

an

object

file.

Linux

Order

of

Initialization

and

Termination

The

run-time

environment

initializes

the

objects

in

shared

libraries

in

the

order

of

their

priority

number.

Priority

numbers

can

range

from

101

to

65535.

If

you

do

not

specify

priority

levels,

the

default

priority

is

65535.

The

smallest

priority

number

that

you

can

specify,

101,

is

initialized

first.

The

largest

priority

number,

65535,

is

initialized

last.

Objects

with

the

same

priority

number

are

initialized

in

reverse-link

order.

(The

first

object

file

listed

on

the

link

step

is

initialized

last.)

By

default,

objects

within

a

compilation

unit

are

initialized

in

declaration

order.

Within

a

single

shared

library

or

the

main

function,

#pragma

priority

controls

the

initialization

order.

Shared

libraries

are

initialized

based

on

their

link

dependencies.

For

example,

if

a

program

links

to

libraries

A

and

B,

and

library

B

links

to

library

C,

C

will

be

initialized

before

B,

and

A

and

B

will

be

initialized

before

the

program.

When

all

of

the

static

objects

in

a

shared

library

have

been

initialized,

the

functions

that

have

the

constructor

attribute

are

run.

All

of

the

functions

from

one

object

file

are

run,

then

the

functions

from

the

next

object

file,

and

so

on.

The

object

files

are

accessed

in

reverse-link

order,

and

the

functions

within

an

object

file

are

run

in

reverse-definition

order.

Objects

are

terminated

starting

with

the

highest

priority

number

(the

reverse

of

the

initialization

order).

Objects

with

the

same

priority

number

are

terminated

in

link

order.

By

default,

objects

within

a

compilation

unit

are

terminated

in

declaration

order.

After

the

objects

in

a

shared

library

have

all

been

terminated,

the

destructor

functions

are

run

in

link

order

of

the

object

files

and

reverse-definition

order

within

an

object

file.

AIX

Order

of

Initialization

and

Termination

The

run-time

environment

initializes

the

objects

in

shared

libraries

in

the

order

of

their

priority

number.

Priority

numbers

can

range

from

-2147483648

to

2147483647.

However,

numbers

from

-2147483648

to

-2147482624

are

reserved

for

system

use.

If

you

do

not

specify

priority

levels,

the

default

priority

is

0

(zero).

28

Programming

Tasks

The

smallest

priority

number

that

you

can

specify,

-2147482623,

is

initialized

first.

The

largest

priority

number,

2147483647,

is

initialized

last.

Objects

with

the

same

priority

number

are

initialized

in

random

order.

If

there

are

multiple

shared

objects

with

different

priority

levels,

the

priority

levels

determine

the

order

in

which

they

will

be

initialized.

Within

a

single

shared

object

or

the

main

function,

#pragma

priority

controls

the

initialization

order.

The

executable

program

has

a

priority

of

0.

When

your

program

exits,

the

destructors

for

global

and

static

objects

are

invoked

in

the

reverse

order

of

their

construction.

Specify

Priority

Levels

for

Library

Objects

These

examples

are

intended

to

show

how

you

can

specify

priority

levels

for

objects

within

a

file,

at

the

file

level,

and

at

the

library

level.

However,

in

most

applications

it

is

not

necessary

to

specify

more

than

one

or

two

priority

levels.

Specifying

Priority

Levels

within

a

File

To

specify

the

order

of

initialization

of

objects

within

a

file,

use

the

#pragma

priority

directive.

You

can

use

any

number

of

directives

within

the

file,

but

the

priority

numbers

must

be

in

increasing

order.

That

is,

you

cannot

specify

an

object

with

a

smaller

priority

number

after

you

have

specified

one

with

a

larger

priority

number.

The

following

example

shows

how

to

specify

the

priority

for

several

objects

within

a

source

file.

...

#pragma

priority(2000)

//Following

objects

constructed

with

priority

2000

...

static

struct

base

A

;

class

house

B

;

...

#pragma

priority(3000)

//Following

objects

constructed

with

priority

3000

...

class

barn

C

;

...

#pragma

priority(2500)

//

Error

-

priority

number

must

be

larger

//

than

preceding

number

(3000)

...

#pragma

priority(4000)

//Following

objects

constructed

with

priority

4000

...

class

garage

D

;

...

2000Mac OS X

Linux

You

can

also

specify

the

priority

with

the

init_priority()

attribute.

This

attribute

has

the

same

effect

as

the

#pragma

priority

directive.

Specifying

the

Priority

Level

of

a

File

To

specify

the

priority

level

of

a

file,

use

the

-qpriority

compiler

option.

Use

this

option

if

you

want

all

the

objects

in

the

file

to

have

the

same

priority

level,

and

you

do

not

want

to

write

#pragma

priority(N)

directives

in

the

file.

Chapter

6.

Constructing

a

Library

29

For

example,

using

the

batch

compiler

option

-qpriority=4000,

is

equivalent

to

using

#pragma

priority(4000).

If

there

are

no

#pragma

priority

directives

within

the

file,

all

objects

within

the

file

have

the

priority

specified

with

-qpriority=

.

If

there

are

#pragma

priority

directives

within

the

file,

all

objects

found

within

the

file

up

to

the

first

#pragma

priority

directive

are

given

the

same

priority

number

as

specified

for

the

file.

The

objects

after

a

#pragma

priority

directive

are

given

that

priority

number

of

N

until

the

next

#pragma

priority

directive

is

encountered.

Within

the

file,

the

first

#pragma

priority

must

have

a

higher

priority

number

than

the

number

used

in

the

-qpriority

option

and

subsequent

#pragma

priority

directives

must

have

increasing

numbers.

Example

of

Object

Initialization

in

a

Group

of

Files

(C++)

You

can

specify

different

priority

numbers

for

objects

within

files,

and

the

compiler

will

initialize

them

in

the

following

order:

1.

#pragma

priority

2.

By

line

and

column

within

a

file

The

following

example

describes

describes

the

initialization

order

for

objects

in

two

files,

farm.C

and

zoo.C.

Both

files

use

#pragma

priority

directives.

The

following

table

shows

part

of

the

files

with

#pragma

priority

directives

and

hypothetical

objects:

farm.C

zoo.C

#pragma

priority(3000)

...

class

dog

A

;

class

dog

B

;

...

#pragma

priority(6000)

...

class

cat

C

;

class

cow

D

;

...

#pragma

priority(7000)

class

mouse

E

;

...

...

class

lion

K

;

#pragma

priority(4000)

class

bear

M

;

...

#pragma

priority(5000)

...

class

zebra

N

;

class

snake

S

;

...

#pragma

priority(8000)

class

frog

F

;

...

Compile

farm.C

and

zoo.C

with

-qpriority=2000.

Initialization

takes

place

in

the

following

order:

Object

Priority

Value

Comment

“lion

K”

2000

Takes

priority

number

of

file

“zoo.o”

(2000)

(Initialized

first)

“dog

A”

3000

Takes

#PRAGMA

PRIORITY(3000)

priority.

“dog

B”

3000

Follows

“dog

A”

“bear

M”

4000

Next

priority

number,

specified

by

#PRAGMA

PRIORITY(4000)

“zebra

N”

5000

Next

priority

number

from

#PRAGMA

PRIORITY(5000)

“snake

S”

5000

Follows

with

same

priority

30

Programming

Tasks

Object

Priority

Value

Comment

“cat

C”

6000

Next

priority

number

“cow

D”

6000

Follows

with

same

priority

“mouse

E”

7000

Next

priority

number

“frog

F”

8000

Next

priority

number

(Initialized

last).

Chapter

6.

Constructing

a

Library

31

32

Programming

Tasks

Chapter

7.

Framework

Header

Files

To

add

a

user-defined

framework

directory

to

the

framework

header

file

search

path,

use

the

-qframeworkdir

compiler

option.

This

option

passes

the

specified

path

to

the

link

editor’s

-F

option.

By

default,

the

compiler

will

search

for

a

header

file

in

the

following

locations,

listed

in

order

of

search

priority,

until

it

is

found:

1.

Ordinary

header

file

locations

2.

User-defined

framework

directories,

specified

by

the

-qframeworkdir

compiler

option

3.

System-default

framework

directories,

listed

in

order

of

priority:

a.

/Library/Frameworks/

b.

/Network/Library/Frameworks/

c.

/System/Library/Frameworks/

4.

Subframework

directories,

if

in

an

umbrella

framework

For

example,

the

following

option

specification

will

add

my_dir1,

my_dir2,

and

my_dir3

to

the

framework

header

file

search

path:

-qframeworkdir=my_dir1

-qframeworkdir=my_dir2

-qframeworkdir=my_dir3

User-defined

framework

directories

are

searched

in

the

order

that

they

are

defined

to

the

compiler.

In

the

above

example,

my_dir1

would

be

searched

first,

followed

by

my_dir2,

and

then

my_dir3.

To

specify

the

name

of

the

framework,

use

the

-framework

compiler

option

in

the

following

format:

-framework

framework_name[.extension]

For

example,

you

can

use

the

following

invocation

command

to

link

to

the

Carbon

framework:

xlc++

-framework

Carbon

-o

myprogram

myprogram.c

©

Copyright

IBM

Corp.

1998,

2003

33

34

Programming

Tasks

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1998,

2003

35

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

Lab

Director

IBM

Canada

Ltd.

Laboratory

B3/KB7/8200/MKM

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

Canada

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement

or

any

equivalent

agreement

between

us.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Programming

Interface

Information

Programming

interface

information

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interface

allow

the

customer

to

write

application

software

that

obtain

the

services

of

this

program’s

tools.

36

Programming

Tasks

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification,

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Note:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

Service

Marks

The

following

terms

are

trademarks

of

the

International

Business

Machines

Corporation

in

the

United

States,

or

other

countries,

or

both:

v

AIX

v

IBM

v

PowerPC

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Industry

Standards

The

following

standards

are

supported:

v

The

C

language

is

consistent

with

the

International

Standard

for

Information

Systems-Programming

Language

C

(ISO/IEC

9899-1999

(E)).

v

The

C++

language

is

consistent

with

the

International

Standard

for

Information

Systems-Programming

Language

C++

(ISO/IEC

14882:1998).

Notices

37

38

Programming

Tasks

����

Program

Number:

5724-G12

SC09-7867-00

	Contents
	Chapter 1. Program Stream I/O
	Standard Streams
	File Handles for Standard Streams
	Redirecting Standard Streams

	Chapter 2. Data Mapping and Storage
	Default Alignment of Aggregates
	Alignment of Bit Fields
	Alignment Examples
	Storage of Floating Point Data
	Storage of float and double Types
	Storage of int, long, and short Types
	Storage of Vector Types
	Mapping of Automatic Variables
	Mapping of Compound Data Types

	Chapter 3. Signals and Exception Handling
	Signals
	Signal Handling
	Program Signal Handling
	Example of Using Volatile Variables

	Chapter 4. Optimization
	Optimization Techniques Used by XL C/C++
	Coding Your Application to Improve Performance
	Find Faster I/O Techniques
	Reduce Function-Call Overhead
	Manage Memory Efficiently
	Optimize Variables
	Manipulate Strings Efficiently
	Optimize Expressions and Program Logic

	Chapter 5. Floating Point Operations
	Compile-Time Floating-Point Arithmetic
	Rounding Mode Restrictions

	Chapter 6. Constructing a Library
	Initialize Shared Library (C++)
	Specify Priority Levels for Library Objects
	Example of Object Initialization in a Group of Files (C++)

	Chapter 7. Framework Header Files
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

